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ABSTRACT 

We describe various ways of construct ing Poisson structures  associated 

to Dr infe ld-J imbo R-matrices  on homogeneous  spaces, research some 

relations between these structures,  and quant ize  some of them. 

There exist two ways to construct Poisson brackets by means of R-matrices on 

some O-homogeneous space M. Hereafter we suppose ~ to be a simple Lie group 

with the Lie algebra g over the field k = R or C. We fix a Cartan subalgebra c 

in g and a subset II of simple roots in the set 12 of all roots of g with respect to 

c. Then the famous modified Drinfeld-Jimbo R-matrix has the form 

1 
R =  RDJ  = -~ Z Xc, A X_c~ E A2~], 

where {Ha, X,~,X_,~}, c~ E 91+, is the Cartan-Chevalley system in g and 12+ is 

the set of all positive roots of g. This R-matrix defines the Sklyanin-Drinfeld 
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(SD) bracket {, }SD on the Lie group O which makes ~5 into a Poisson-Lie group 

(see [DO]). 

The first way to construct a Poisson bracket on M is to reduce (in case it is 

possible) the Sklyanin-Drinfeld bracket. In this case we perceive the algebra of 

functions on M as a subalgebra of functions on ~. The reduction is possible, if 

applying the SD bracket to any pair of functions from the subalgebra gives such 

a function. 

Another way is to construct a bilinear operator 

(1) C~(M)  9 f ,g  ~-~ {f ,g}R = (p(R),df | 

where p: g -* Vect(M) is a representation of g in the space of all smooth vector 

fields on M. Under certain conditions this operator defines a Poisson bracket on 

M (we call it an R-matrix Poisson bracket). Let us consider these conditions in 

more details. 

Let x E M be a fixed point. We denote by 2) = 2)x = Stab(x) the stabilizer 

of x in ~5 and [} = t}x C g the corresponding Lie subalgebra. It is proved in 

[DGM] that  the bracket {, }R is a Poisson one if [}x contains a maximal nilpotent 

subalgebra of g. A similar statement holds for symmetric spaces. We show in 

this paper that the operator (1) defined by means of RDJ is a Poisson bracket on 

any symmetric space M. 

In case the algebra C~ is equipped with another Poisson bracket {, } and 

the range of p(g) lies in the space of Poisson vector fields, i.e. vector fields 

X E Vect(M) preserving the bracket {, }, then the brackets {, } and {, }R are 

compatible (see for example [DGM]), i.e. each bracket of the family 

(2) {, }a,b = a{, } + b{, }R, a, b e k  

is Poisson one. 

In Section 1 we describe a class of manifolds M which allow us to reduce the 

Sklyanin-Drinfeld bracket. We show that  if M is a Hermitian symmetric space, 

then the reduced SD bracket coincides with one of the brackets in the family 

(, }a,b with {, } being the Kirillov bracket. 

Two natural questions arise: whether the reduced SD bracket can be quantized 

on each space M of the class mentioned above and whether all brackets from the 

family {, }a,b (assuming M to have two Poisson structures as above) can be 

quantized? 
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The answer is positive. A new approach to this problem using a nonassociative 

multiplication as an intermediate step has been developed recently by S. Shnider 

and the first author and will appear in a future article. 

The method of quantizing used in the paper is similar to one used in [DGM] 

and [DG]. It  consists of twisting the initial commutat ive structure on a ~-  

homogeneous space M by means of all  element F e Ug| (but, unlike [DGM] 

and [DG], we have to specify this element). Our construction immediately im- 

plies that  the quantum deformation is fiat, i.e. C ~ ( M )  does not change under 

deformation as a vector space. From the algebraic point of view flatness means 

that  the deformed algebra C ~ ( M ) h  is a flat k[[h]]-module. 

1. R - m a t r i x  P o i s s o n  s t ruc tures  

Let g, @, R = RDj be as above and M a ~-homogeneous space. Consider the 

element 

= [R 12,R 13] + [R 12,R 231 + [R 13,R 23] e A3g. 

Note that  the dimension of the subspace of g-invariant elements in A3(g) is 

equal to one and ~ is a generator of the space. 

It is obvious that  the bracket {, }R constructed according to (1) is a Poisson 

bracket on M if and only if 

(3) #(p(~), df | dg | dh) = 0 

for arbi trary f ,g ,  h e C~ p denotes the multiplication in C ~ ( M ) .  Since 

is @-invariant, it is sufficient to check the equality (3) at some point x E M. 

Fix a point x E M . The relation (3) is true if 

(4) ~ e  ~ A g A ~  

where ~ = 0x, the isotropy subalgebra of x. 

PROPOSITION 1.1: The relation (4) holds if  a homogeneous space M satisfies 

one of the following condition: 

1. O contains a maximal nilpotent subalgebra of g. 

2. M is a symmetric space, i.e. there exists a decomposition g = [} @ m, 

m is a subspace in g, and an involutive automorphism O: g --~ g such that 

0 = id on 0 and 0 = - i d  on rn. 
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Prod." The first case was examined in [DGM]. Consider now the second case. 

We fix a basis {m~} E m, {hi} C O in 9 and represent ~ in this basis. It  is obvious 

that  ~ does not contain any summands of the type rn~ | mj  | mk since ~ is 

0-invariant (~ is up to a factor dual to the form (Ix, y], z), where x,y,  z E 9 and 

(,)  is the Killing form). Therefore, the relation (4) holds, and this completes the 

proof. | 

Remark 1.1: Proposition 1.1 is true either over the field k = R or over the field 

k = C, but in the second case we mean by M a complex analytic manifold and 

replace the space C ~ ( M )  by the space of all holomorphic functions on M. 

In the sequel we denote by gc the compact form of the complexification of the 

algebra g and use the analogous notations for the corresponding group. 

It is easy to see that  iRr)j E A20c and, therefore, iRDj can be considered as a 

modified R-matr ix  on 9c. Note that  this R-matr ix  was constructed by S. Majid 

in terms of Manin triples. By the same reason R-matr ix  iRDj defines a Poisson 

bracket on all symmetric spaces of c5c. 

Note that  the case of orbits in 9" is investigated in [KRR], where it has been 

shown that  the operator (1) defines a Poisson bracket on all orbit if and only if 

it is a symmetric space. 

Now we compare the R-matr ix  brackets with those obtained fl'om tile 

Sklyanin-Drinfeld (SD) brackets by means of Poisson reduction. We call a SD 

bracket the following one: 

{ , } s D  = {, },-, 

where the brackets {, }t (resp. {, }~) are defined according to (1) by means of the 

canonical representation p = Pl (resp. p = p~) of 9 in the space of right- (resp. 

left-) invariant vector fields on C5. 

Let M be a cs-homogeneous space. Fix a point x0 E M. Then there exists a 

natural  embedding 

C ~ ( M )  ~ C~(C5), fM(x) ~ re(g) = fu(gxo). 

Hence, the algebra C ~ ( M )  can be considered as a subalgebra of C~176 

The following question naturally arises: whether the bracket {, }SD can be 

reduced to the space Coo(M)? 
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The positive answer to this question has been given in [LW] for any orbits of 

a compact group @c in g*. 

Note that  the bracket is reducible if the following relation holds: 

(s) p r ( X ) { f , g }  = 0, if X E 0, p r ( X ) f  = p~(X)g = O. 

Definition 1.1: Let P be a subset in H (recall that  1I is the fixed set of simple 

positive roots of g with respect to the Cartan subalgebra c). We say that  a 

subalgebra I) c g is P-generated if it is generated by the family of elements 

{X+~, c~ E P} and by a subalgebra of c. The corresponding homogeneous space 

is said to be P-generated as well. 

Note that  if 0 is P-generated, it can be decomposed into a direct sum 0 = ps@pa 

where the first component is a semisimple Lie algebra generated by elements 

{X• (~ E P} and the second one is an abelian subalgebra of c. 

Of course, the property for a subalgebra I) to be P-generated depends on 

choosing the family of simple roots H. It  is easy to see that  if x E r then the 

isotropy algebra of x by Ad-action of r will be P-generated with respect to some 

choice of the set of simple roots. 

PROPOSITION 1.2: For any homogeneous P-generated space the relation (5) 

holds and, therefore, the bracket {, }SD can be reduced to the space M.  

Proo~ The following relation for X E 0 implies the statement we need: 

(6) [AX, RDJ] E 0 A [~. 

Hereafter A denotes the usual coproduct in the enveloping algebra Ug. 

Prove now the relation (6). If X E c then it is easy to see that  lAX, RDj] = 0. 

If X = XZ, where/3 is a simple root, then 

2[Ax , RDj] = [AX , E A X-m] 
(7) 

= A + c ,  _oX  ^ 

where the sum is taken for all the positive roots a,  and we assume X~ to be 

equal to  zero when 3' is not a root. Observe now that  in case /3 + a is a root 

the term XZ+~ A X_~ does not appear in (7). Indeed, it could only appear  

upon multiplying by XZ the terms X~ A X_~ and XZ+~ A X_Z_~ from RDj. 

Then, it would have the coefficient c~,~ + c~_z_~ if/3 + a is a positive root 

and cz,~ - cz,_~_,~ if/3 + a is a negative root. But in case of a positive root 
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c~,~+c~,_~_~ = 0, which follows from the relation c~,~ = c~,~ when a + f l + 7  = 0 

(see [HI). The case when fl + a is a negative root does not appear at all because 

a is a positive root and ~ is a simple root, so that /~ + a cannot be a negative 

root. It is easy to check that the coefficient by the term X~ A XZ_~ in (7) 

is equal to zero as well. Thus, only terms of the form H a A XZ E b A b have 

a nonzero coefficient. Since the algebra p8 is generated by elements X+~ with 

13 E P being simple roots, it is shown that  (6) holds. This completes the proof 

of the proposition. | 

Now, let us consider an orbit M C g* which is a symmetric space. It is 

equipped with two brackets: the first is the Kirillov bracket, another is the R- 

matrix one (which coincides with the reduced bracket {, }l). Besides that,  if M 

is P-generated, it can be equipped with the invariant reduced bracket {, }~. 

The following question arises: what is the relation between the reduced bracket 

{, ~ and the Kirillov one? 

PROPOSITION 1.3: H M  is an orbit in g* and a P-generated Hermitian symmetric 

space, then the reduced bracket {, }~ coincides (up to a factor) with the girillov 

bracket. 

Proof'. It is easy to see that  the reduced bracket {, }~ is nondegenerate. Hence, 

{, }, defines by duality a closed invariant differential 2-form which has to be 

proportional to the corresponding form defined by the Kirillov bracket, because 

of the following two facts for Hermitian symmetric spaces: the dimension of 

the space of closed invariant differential/-forms is equal to dimH~(M, (3), and 

dim H2(M,  (3) = 1. It completes the proof. | 

Thus, for a Hermitian symmetric space M we have the family of brackets 

(2), where {, } is the Kirillov bracket (or reduced bracket {, }~) and {, }R is the 

R-matrix bracket (or reduced bracket {, }l). 

Note that  if M = ~3/ffi, where ffi E ~3 is the subgroup with Lie algebra a 

generated by {X~, a > 0}, then the bracket {, }SD can be reduced to the space 

M as well and coincides with the R-matrix bracket {, }t, because in this case the 

reduced bracket {, }~ is equal to zero. 

2. Quantization of reduced SD brackets 

It is well-known that  the quantum counterpart of a SD structure on a semisimple 

Lie group is a quantum group. More often the quantum groups are introduced 



Vol. 92, 1995 POISSON STRUCTURES 29 

in terms of deformed relations between coordinate functions. But the result of 

quantization of this structure can be also described in terms of the deformation 

quantization. 

As it is proved in [D2], there exist two series in h, namely F = F(h) �9 U|]| 

and r = r  �9 V{]| such that  

(8) F = l m o d ( h ) ,  F - F  2 1 = R m o d ( h 2 ) ,  

(9) F12A12Fr = F23A23F 

and r is g-invariant. 

Following [Ta] we introduce the new multiplication in the space C~176 

(10) I,o �9 c~176 ~ f *o = ~,F;-1FM | 

where # is the usual multiplication and Fr = p~(F) and Fl = pt(F) are the left- 

and right-invariant bidifferential operators on O, where we mean under pr and 

pz the extension up to Ug of the corresponding representation of g. 

Since r is 9-invariant, the 3-differential operators ~ ,  = p~(~) and ~l = Pt(r 

coincide. Using this fact, the relation (9), and commutativity of Fr and Fl, it 

is easy to check that  the new multiplication will be associative. Due to (8) the 

relations 

(11) f * g  = fg mod(h), f , g -  g ,  f = h{f ,g} mod(h 2) 

with {, } = {, }SD are satisfied, which means that the correspondence principle 

holds, or, in other words, the constructed multiplication quantizes the bracket 

{, }SD. 
Consider a P-generated O-homogeneons manifold M. We want to reduce the 

multiplication (10) to M in a similar way. Let us show that  this can be done 

using some F. 

THEOREM 2.1: There exist F and ~ satisfying the relations (8), (9) and the 

following condition: 

(12) F A ( X ) F  -1 e Ub| ~ if X e O, 

where U~| ~ C Ub| is the maximal idea/ generated by 
{ X | 1 7 4  X e ~ } .  
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Note that  the condition (12) may be perceived as a quantum counterpart of 

the condition (6). 

First, we will prove a lemma. Let Uhg be the quantum group corresponding 

to g. The algebraic structure on Uhg is defined by means of some analytic re- 

lations between the generators {Ha, X+~}, a �9 II (see [D1]). Let D = P8 @ pa 

be a P-generated Lie subalgebra of g. Denote by Uh D the "quantum subgroup" 

corresponding to D, i.e. the subalgebra of Uhg generated by X+~,a �9 P, and 

H E p %  

LEMMA 2.1: There exists an algebra isomorphism 

i: uh~ ~ U~[[h]] 

such that (a) i -- id on c, (b) being restricted on UhO, i is an algebra isomorphism 

between Uhf) and Ub[[h]]. 

Proof'. Adding to f) the elements from r we will get the P-generated algebra f)' 

which contains the Caftan subalgebra c. It is easy to see that  if the lemma is 

true for f)~, it will be true for D- So that we have to prove the lemma in the case 

when D contains the Cartan subalgebra c. The existence of i with the property 

(a) has been proved in [D1]. Let D = p8 �9 pa be the decomposition, where the 

first component is a semisimple Lie algebra and the second one is an Abelian 

subalgebra of c. Then f) coincides with 

(13) (~)P~ = {X e ~; IX, pa I = 0}. 

Consider Uhp" as a subalgebra of UhQ. If i satisfies the condition (a) from the 

lemma, then 

i(Vhp') C (Ug) p" [[hi], 

where 

(ug)  ~ = ( x  e ug;  [x ,  p~ -- o}. 

On the other hand, there exists an isomorphism 

i': Uhp" --, Up'[[h]] C (Vg)P'[[h]], 

which is identical mod(h). There exists an inner automorphism of (Vg) p" [[hi] 

preserving r which maps i(Uhp') onto it(Uhp'). This follows from the fact that  

Hl(p  ' ,  (Ug)Pa/Up ") = O. This proves the assertion (b) of the lemma. I 
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Proof  of  Theorem 2.1: The algebra Uhg has a Hopf algebra structure. Consider 

the composed map 

i - '  
j :  Ug[[h]] �9 Uhg Uhg | Ug[[h]] | 

where Ah is the coproduct in Uh9 and the mapping i is from the previous lemma. 

This map is an algebra morphism from Vg[[h]] to Ug| which restricts to 

a morphism from U0[[h]] to U0| There exists an invertible element F �9 

Ug| such that  F = 1 mod(h) and j ( X )  = F A ( X ) F  -1 (this follows from 

the triviality of cohomology Hi(g,  UI~| see [D1]). It is clear that this F is 

as required in the theorem. Now we define r using the formula (9). Since the 

coproduct j is coassociative, (I) has to be a g-invariant element in Ug| The 

second formula (8) can be checked using the explicit form of the coproduct in 

Uh~. The theorem is proved. | 

Now we show that the multiplication (10) is reducible onto P-generated 

homogeneous spaces. 

THEOREM 2.2: Let ~5 be a simple Lie group with a fixed Cartan subalgebra in 

its Lie algebra and a set of  simple roots II. Suppose M is a P-generated relative 

to II homogeneous space of  ~.  Then the SD bracket on ~ corresponding to II 

can be reduced onto M and the obtained SD bracket on M can be quantized. 

Proof'. The fact that the bracket is reducible is the content of Proposition 1.2, 

and we have to demonstrate that 

p~(X)l~F~-l(f  @g) = O, if X �9 0 and p ~ ( X ) f  = p,.(X)g = O. 

But this follows from the chain of equalities 

p~(X)#F~- l ( f  | g) = # p ~ ( A X ) F ~ - l ( f  @ g) 

= | g )  = O, 

which take place due to Theorem 2.1 and the property of f and g. Therefore, 

the multiplication (10) is reducible, which completes the proof. I 

This theorem shows that  one can quantize the reduced SD bracket on any P- 

generated O-homogeneous manifold M in the sense of deformation quantization. 
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